GCE AS/A level

MATHEMATICS - FP1
 Further Pure Mathematics

A.M. WEDNESDAY, 30 January 2013
$1^{1 / 2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{1}{2+x^{2}}$ from first principles.
2. Consider the equations

$$
\begin{aligned}
x+2 y+3 z & =4 \\
2 x-y+z & =2 \\
x+7 y+8 z & =k
\end{aligned}
$$

Given that these equations are consistent,
(a) find the value of the constant k,
(b) find the general solution of the equations.
3. The complex number z and its complex conjugate \bar{z} satisfy the equation

$$
\mathrm{i} z+2 \bar{z}=\frac{4+6 \mathrm{i}}{1+\mathrm{i}}
$$

(a) Determine z in the form $x+\mathrm{i} y$.
(b) Find the modulus and the argument of z.
4. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{lll}
\lambda & 1 & 1 \\
1 & 3 & \lambda \\
4 & 7 & 5
\end{array}\right]
$$

(a) Find the values of λ for which \mathbf{A} is singular.
(b) Given that $\lambda=1$,
(i) determine the adjugate matrix of \mathbf{A},
(ii) determine the inverse matrix \mathbf{A}^{-1}.
5. The roots of the cubic equation $x^{3}+4 x^{2}+3 x+2=0$ are denoted by α, β, γ.
(a) Show that

$$
\begin{equation*}
\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}+\frac{1}{\alpha \beta}=2 \tag{3}
\end{equation*}
$$

(b) Determine the cubic equation whose roots are $\frac{1}{\beta \gamma}, \frac{1}{\gamma \alpha}, \frac{1}{\alpha \beta}$.
6. Use mathematical induction to prove that

$$
\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for all positive integers n.
7. The function f is defined for $x>0$ by

$$
f(x)=x^{\ln x} .
$$

(a) Obtain an expression for $f^{\prime}(x)$.
(b) Find the coordinates of the stationary point on the graph of f and determine whether it is a maximum or a minimum.
8. The transformation T in the plane consists of an anticlockwise rotation through 45° about the origin followed by a reflection in the line $x+y=0$.
(a) Show that the 2×2 matrix representing T is

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
-1 & -1 \tag{3}\\
-1 & 1
\end{array}\right]
$$

(b) (i) Find the equation of the image under T of the line $y=m x$.
(ii) Given that the line $y=m x$ is transformed into itself under T, determine the possible values of m.
9. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w=z(z+1) .
$$

(a) Show that

$$
v=(2 x+1) y
$$

and obtain an expression for u in terms of x and y.
(b) The point P moves along the line $y=x+1$. Find the equation of the locus of Q, giving your answer in the form $v=a u^{2}+b u$ where a, b are positive integers.

